

CHEMISTRY HIGHER LEVEL PAPER 2

0 0

Candidate session number

Thursday 16 May 2013 (afternoon)

2 hours 15 minutes

Exam	ination	code
------	---------	------

2 2 1 3 - 6 1 0 8

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer two questions.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- A clean copy of the *Chemistry Data Booklet* is required for this paper.
- The maximum mark for this examination paper is [90 marks].

SECTION A

Answer all questions. Write your answers in the boxes provided.

1. A student decided to determine the molecular mass of a solid monoprotic acid, HA, by titrating a solution of a known mass of the acid.

The following recordings were made.

Mass of bottle / $g \pm 0.001 g$	1.737
Mass of bottle + acid HA / $g \pm 0.001 g$	2.412

)	This known mass of acid, HA, was then dissolved in distilled water to form a 100.0 cm ³	
' <i>'</i>	This known mass of acid, HA, was then dissolved in distilled water to form a 100.0 cm ³ solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of a 0.100 mol dm ⁻³ NaOH solution. Calculate the molar mass of the acid.	[3
	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3
	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3
_	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of	[3
_	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of a 0.100 mol dm ⁻³ NaOH solution. Calculate the molar mass of the acid.	[3
_	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of a 0.100 mol dm ⁻³ NaOH solution. Calculate the molar mass of the acid.	[3
_	solution in a volumetric flask. A 25.0 cm ³ sample of this solution reacted with 12.1 cm ³ of a 0.100 mol dm ⁻³ NaOH solution. Calculate the molar mass of the acid.	[3

(Ouestion 1	l continued,
Question 1	

(c)	The percentage composition of HA is 70.56% carbon, 23.50% oxygen and 5.94% hydrogen. Determine its empirical formula.	[2]
(d)	Determine the molecular formula of HA.	[2]
(e)	A solution of HA is a weak acid. Distinguish between a weak acid and a strong acid.	[1]

(This question continues on the following page)

Turn over

(f) To investigate the effect of temperature on the effectiveness of a buffer solution, the student placed 20.0 cm³ of the buffer solution in a water bath at 24 °C. He added small portions of hydrochloric acid, stirring after each addition, until a total of 10 cm³ was added, and measured the pH continuously during the addition. The procedure was repeated at different temperatures and the results are shown in the following graph.

(1)	State what is meant by a buffer solution.	[2]
(ii)	With reference to the graph on page 4, describe the effect of increasing temperature on the effectiveness of the buffer solution.	[2]

Please do not write on this page.

Answers written on this page will not be marked.

2.

Table 8 of the Data Booklet shows the atomic and ionic radii of the elements. Describe and explain the trend in atomic radius across period 3. (a) [3] A student formulates the following hypothesis: "If phosphorus were to form a positive (b) ion, P^{3+} , its ionic radius would probably be between $110 \times 10^{-12} \, \text{m}$ and $212 \times 10^{-12} \, \text{m}$." Evaluate this hypothesis. [2] 3. To determine the activation energy of a reaction, the rate of reaction was measured at different temperatures. The rate constant, k, was determined and $\ln k$ was plotted against the inverse of the temperature in Kelvin, T^{-1} . The following graph was obtained.

(a)	Define the term <i>activation energy</i> , E_a .	[1]

Use the graph on page 8 to determine the value of the activation energy, $E_{\rm a}$, in kJ mol $^{\circ}$. [2]
_

On the graph on page 8, sketch the line you would expect if a catalyst is added to (c) the reactants. [1]

Turn over

4. Ethanedioic acid (oxalic acid), $(COOH)_2$, reacts with acidified potassium permanganate solution, $KMnO_4$, according to the following equation.

$$5(\text{COOH})_2(\text{aq}) + 2\text{MnO}_4^-(\text{aq}) + 6\text{H}^+(\text{aq}) \rightarrow 10\text{CO}_2(\text{g}) + 2\text{Mn}^{2+}(\text{aq}) + 8\text{H}_2\text{O}(\text{l})$$

The reaction is a redox reaction.

(a)	Define <i>oxidation</i> in terms of electron transfer.	[1]	
(b)	Calculate the change in oxidation numbers of carbon and manganese.	[2]	
	Carbon:		
	Manganese:		
(c)	Identify the oxidizing and reducing agents.	[1]	
	Oxidizing agent:		
	Reducing agent:		

Ded	uce the half-equation involving ethanedioic acid.	[1]
(i)	The standard electrode potential for the half-equation involving ethanedioic acid is E^{\oplus} = -0.49 V. Using Table 14 of the Data Booklet, calculate the standard electrode potential for the equation on page 10.	[2]
(ii)	Explain the sign of the calculated standard electrode notential	[1]
		[1]
Pred	lict the sign of ΔG^{\ominus} for this reaction.	[1]
	(i) (ii)	E^{Θ} = -0.49 V. Using Table 14 of the Data Booklet, calculate the standard electrode potential for the equation on page 10.

5. The following diagram shows the three-dimensional structure of a molecule.

- (a) Apply IUPAC rules to state the name of this molecule. [1]
- (b) Deduce the structural formula of **two** isomers of the molecule above with the same functional group. [2]

Som	e organic nitrogen compounds have economic importance.	
(i)	Apply IUPAC rules to state the name of CH ₃ CH ₂ CH ₂ NH ₂ .	[1]
(ii)	Describe, using an equation, how CH ₃ CH ₂ CH ₂ NH ₂ can be prepared from a nitrile.	[1]
(iii)	Some polymers can be produced by the reaction of amines and carboxylic acids. Identify what type of reaction this is.	[1]
(iv)	State one important feature monomers must have to be able to produce such polymers.	[1]
(v)	Outline the economic importance of this type of polymer.	[1]

SECTION B

Answer two questions. Write your answers in the boxes provided.

(ii) Calculate the percentage abundance of each isotope, given that the relative atomic mass of B is 10.81. [2]	(a) ((i)	Define the term <i>isotopes of an element</i> .	[1]
mass of B is 10.81. [2]				
mass of B is 10.81. [2]				
	L			
	((ii)		[2]
	((ii)	mass of B is 10.81.	[2]
		(ii)	mass of B is 10.81.	[2]

The percentage abundance of the isotopes of boron can be determined with a mass spectrometer. The diagram shows the operation of a mass spectrometer.

(i)	State the names of stages R and S .	[1]
	R:	
	S:	

(ii)	Identify the formula of the main ion formed in stage Q.	[1]

(iii)	Identify the species that is used as the scale for the mass of the isotopes.	[1]

(This question continues on the following page)

Turn over

(c)

Phos	sphorus forms	two chlorides, PCl ₃ and PCl ₅ .		
(i)	Apply the A of phosphore	aufbau principle to state the full eas.	lectron configuration for an atom	[1
(ii)	Deduce the I	Lewis structures for PCl ₃ and PCl ₅ .		[2
		PCl ₃	PCl ₅	
(iii)	Predict the s	hapes and the bond angles in the tw	o molecules.	[4
		PCl ₃	PCl ₅	
	Shape			
В	ond angles			

(iv)	Identify the type of hybridization present in PCl ₃ .	[1]
(v)	Compare the melting points of PCl ₃ and PCl ₅ and explain the difference.	[3]
(vi)	Describe, using an equation, the reaction of PCl ₅ with water.	[1]

(This question continues on the following page)

Turn over

(i)	Define an <i>acid</i> according to the Lewis theory.
(ii)	State and explain the acid–base character of PCl ₃ according to the Lewis theory.
	ain the delocalization of π electrons using the O_3 molecule as an example ading two facts that support the delocalization.
	ain the delocalization of π electrons using the O_3 molecule as an example ading two facts that support the delocalization.

(a)	Bro	mine is a member of group 7, the halogens.	
	(i)	Explain the trend in reactivity of the halogens.	[3]
	(ii)	Deduce, using equations where appropriate, if bromine reacts with sodium chloride solution and with sodium iodide solution.	[2]
(b)) Iron (i)	is a transition metal. Describe the bonding in metals and explain their malleability.	[3]

(This question continues on the following page)

Turn over

(ii)	List three characteristic properties of transition elements.	[2]
(iii)	Identify the type of bonding between iron and cyanide in $[Fe(CN)_6]^{3-}$.	[1]
(iv)	Deduce the oxidation number of iron in $[Fe(CN)_6]^{3-}$.	[1]
(v)	Draw the abbreviated orbital diagram for an iron atom using the arrow-in-box notation to represent electrons.	[1]

	Draw the abbreviated orbital diagram for the iron ion in $[Fe(CN)_6]^{3-}$ usi arrow-in-box notation to represent electrons.	ing the
Fresh soluti	ly prepared iron(II) bromide can be electrolysed both in the liquid state and on.	d in aqueo
(i)	Describe, using a diagram, the essential components of an electrolytic cell.	Į.

(1V)	concentrated.	[1]
(v)	Explain why this other product is formed.	[1]

8.

(i)	Calculate the enthalpy change of combustion of methanol.	[4
(ii)	Using the theoretical value in Table 12 of the Data Booklet, discuss the experimental result, including one improvement that could be made.	[3
(ii)		[3]
(ii)		[3

(b) Methanol can be produced according to the following equation.

$$CO(g) + 2H_2(g) \rightarrow CH_3OH(l)$$

(i) Calculate the standard enthalpy change of this reaction, using the values of enthalpy of combustion in Table 12 of the Data Booklet.

[3]

 •

(ii) Calculate the standard entropy change for this reaction, ΔS^{Θ} , using Table 11 of the Data Booklet and given:

 S^{\ominus} (CO) = 198 J K⁻¹ mol⁻¹ and S^{\ominus} (H₂) = 131 J K⁻¹ mol⁻¹. [1]

(iii) Calculate, stating units, the standard free energy change for this reaction, ΔG^{\ominus} , at 298 K.

.....

.....

(This question continues on the following page)

Turn over

(Question 8 continued	on 8 contint	co	8	Question	(
-----------------------	--------------	----	---	----------	---

	Predict, with a reason, the effect of an increase in temperature on the spontaneity of this reaction.
The	manufacture of gaseous methanol from CO and H_2 involves an equilibrium reaction.
	$CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H^{\ominus} < 0$
(i)	Outline the characteristics of a chemical equilibrium.
(ii)	Deduce the equilibrium constant expression, $K_{\rm e}$, for this reaction.
(ii)	Deduce the equilibrium constant expression, K_c , for this reaction.
(ii)	Deduce the equilibrium constant expression, K_c , for this reaction.
(ii)	
(ii)	

	are present. Calculate K_c .
n pa	e and explain the effect of the following changes on the equilibrium position of the reart (c). Increase in temperature.
n pa	art (c).
	art (c).
n pa	art (c).
n pa	
i)	art (c).
n pa	Increase in temperature.
i)	Increase in temperature.
i)	Increase in temperature.

9.

(i)	Outline three features of a homologous series.	[3]
(ii)	Describe a test to distinguish but-2-ene from butane, including what is observed in each case.	[2]

	State what is meant by the term <i>stereoisomers</i> .	
(v)	Explain the existence of geometrical isomerism in but-2-ene.	
A br	comoalkane, C_4H_9Br , reacts with a warm aqueous sodium hydroxide solution, NaOH. State the equation for the reaction of C_4H_9Br with NaOH.	

(c) The time taken to produce a certain amount of product using different initial concentrations of C_4H_9Br and NaOH is measured. The results are shown in the following table.

Reaction	$[C_4H_9Br] / 10^{-2} mol dm^{-3}$	[NaOH] / 10 ⁻³ mol dm ⁻³	t/s
A	1.0	2.0	46
В	2.0	2.0	23
С	2.0	4.0	23

(i)	Deduce the order of reaction with respect to C_4H_9Br and NaOH, using the data above.	[3]
	C ₄ H ₉ Br:	
	NaOH:	
(ii)	Deduce the rate expression.	[1]
(iii)	Based on the rate expression obtained in (c) (ii) state the units of the rate constant, k .	[1]

(iv)	Deduce whether C ₄ H ₉ Br is a primary or tertiary halogenoalkane.	[2]
(v)	Determine the structural formula of C ₄ H ₉ Br.	[1]

	arrows to represent the movement of electron pairs.
(ii)	
(ii)	Halogenalkanes can react with NaOH via S_N1 and S_N2 type mechanisms. Explain why C_4H_9Br reacts via the mechanism described in (d) (i).
(ii)	Halogenalkanes can react with NaOH via $S_{\rm N}1$ and $S_{\rm N}2$ type mechanisms. Explain why C_4H_9Br reacts via the mechanism described in (d) (i).
(ii)	
(iii)	Explain why C ₄ H ₉ Br reacts via the mechanism described in (d) (i).
	Explain why C ₄ H ₉ Br reacts via the mechanism described in (d) (i).
	Explain why C ₄ H ₉ Br reacts via the mechanism described in (d) (i).
	Explain why C ₄ H ₉ Br reacts via the mechanism described in (d) (i).

